Exam. Code : 103206 Subject Code : 1192

B.A./B.Sc. $6^{\text {th }}$ Semester MATHEMATICS (Numerical Analysis) Paper-II

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Do any FIVE questions, selecting at least TWO questions from each section. All questions carry equal marks. Non-programmable scientific calculator is allowed.

SECTION-A

1. (a) If $\mathrm{r}=3 \mathrm{~h}\left(\mathrm{~h}^{6}-2\right)$, find the percentage error in r at $h=2.1$ if the error in h is 6.5%.
(b) Apply Bisection method in four stages to find the root of the equation $x^{3}-4 x-9=0$.
2. (a) Show that Newton's method is of quadratic convergence. Estimate the value of $\sqrt{\frac{1}{41}}$ up to four decimal places by applying Newton's iterative method.
(b) Apply Gauss elimination method to solve the system of equations :

$$
\begin{aligned}
& X+Y+Z=9 \\
& 2 X-3 Y+4 Z=13 \\
& 3 X+4 Y+5 Z=40
\end{aligned}
$$

2794(2519)/EBH-18586(Re)
3. (a) Apply triangular method to solve the system of equations :

$$
\begin{aligned}
& 3 X+2 Y+7 Z=4 \\
& 2 X+3 Y+Z=5 \\
& 3 X+4 Y+Z=7
\end{aligned}
$$

(b) Solve by Jacobi's iteration method, the equations:

$$
\begin{aligned}
& 20 X+4 Y-2 Z=17 \\
& 3 X+20 Y-Z=-18 \\
& 2 X-3 Y+20 Z=25
\end{aligned}
$$

4. (a) Assuming that the following values of y belong to the polynomial of degree 4 , compute the next three values.

x	0	1	2	3	4	5	6	7
y	1	-1	1	-1	1	-	-	-

(b) Prove the following identities:
(i) $\nabla=1-\mathrm{E}^{-1}$
(ii) $\delta=E^{\frac{1}{2}}-E^{\frac{-1}{2}}$.
5. (a) Prove with the usual notations that :
(i) $\left(E^{\frac{1}{2}}+E^{\frac{1}{2}}\right)(1+\Delta)^{\frac{1}{2}}=2+\Delta$
(ii) $\Delta^{3} y_{2}=\nabla^{3} y_{5}$.
(b) Evaluate :
(i) $\Delta^{2}\left(\frac{5 x+12}{x^{2}+5 x+16}\right)$ and
(ii) $\Delta^{n}\left(e^{\mathrm{x}}\right)$.

2794(2519)/EBH-18586(Re)

SECTION-B

6. (a) Using Newton's interpolation formula find the cubic polynomial which takes the following values. Hence evaluate $f(4)$.

x	0	1	2	3
$f(x)$	1	2	1	10

(b) Apply Bessel's formula to obtain y_{25}, given $y_{20}=2854, y_{24}=3162, y_{28}=3544, y_{32}=3992$.
7. (a) Using Lagrange's interpolation formula find the value of y, when $x=10$, if the following values of x and y are given :

x	5	6	9	11
y	12	13	14	16

(b) Determine $f(x)$ as a polynomial in x for the following data, using Newton's divided difference formula.

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

8. (a) A function is given according to the table below. Find the derivation for $\mathrm{x}=0.5$.

x	0.35	0.40	0.45	0.50	0.55	0.60	0.65
y	1.521	1.506	1.488	1.467	1.444	1.418	1.389

(b) Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using (i) Simpson's $1 / 3^{\text {rd }}$ rule taking $h=1 / 4$ and (ii) Simpson's $3 / 8^{\text {th }}$ rule taking $h=1 / 6$.
9. (a) Find by Taylor's series method the value of y at $x=0.1$ and $x=0.2$ to five decimal places from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
(b) Using Runge-Kutta method of fourth order solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$.
10. (a) Find the value of y for $\mathrm{x}=0.1$, by Picard's method given that $\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$.
(b) Using Milne's Predictor-Corrector method to obtain the solution of the equation $\frac{d y}{d x}=x-y^{2}$ at $x=0.8$, given that $y(0)=0.0000, y(0.2)=0.0200$, $y(0.4)=0.0795, y(0.6)=0.1762$.

